ООО ЭЛИСИТ
Лидер России 2015 - Продукция отмечена золотой медалью конкурса качества - Установки индукционного нагрева "TESLINE"

Индукционный нагрев ТВЧ :: Статьи


Законы, физические величины и свойства применяемых материалов, определяющие индукционный нагрев

Дата публикации: 16.09.2014

Для быстрой навигации по статье нажмите ссылку:

→ 1. Область применения токов высокой частоты

→ 2. Поверхностный эффект, глубина проникновения тока

→ 3. Формы и размеры проводника

→ 4. Магнитная проницаемость

→ 5. Электрическое сопротивление

→ 6. Теплоемкость

→ 7. Теплопроводность

→ 8. Температуропроводность


1. Область применения токов высокой частоты

Под высокочастотным нагревом (нагрев токами высокой ча­стоты) понимается нагрев при бесконтактной передаче энергии в нагреваемое тело с помощью электромагнитного поля. В зависи­мости от того, какая составляющая электромагнитного поля играет основную роль, различают нагрев в магнитном поле (индукцион­ный нагрев) и электрическом поле (диэлектрический или «емкост­ный» нагрев). Системы высокочастотного нагрева имеют ряд осо­бенностей:

  1. нагрев может осуществляться только на переменном токе;
  2. понятие «высокая» или «низкая» частота является относи­тельным и определяется соотношением размеров тел и длины электромагнитной волны в их материале;
  3. в системах всегда имеется реактивная мощность (индуктив­ная или емкостная), причем ее величина обычно много больше активной;
  4. системы являются объектами с распределенными пара­метрами, что усложняет измерения в них и расчеты.

Для индукционного нагрева используются частоты от 50 Гц до 5 мГц, для диэлектрического - от сотен килогерц до тысяч мегагерц.

Индукционный нагрев успешно применяется для следующих технологических процессов:

  1. плавки металлов в открытых и вакуумных индукционных печах;
  2. индукционного нагрева заготовок под штамповку, прокатку, гибку и другие способы пластической деформации;
  3. поверхностной индукционной закалки;
  4. индукционного нагрева для термообработки (отжиг, отпуск, рекристаллизация, нормализация, закалка) сортового проката, труб, лент;
  5. сварки труб, профилей и кабельных оболочек;
  6. высокочастотной пайки и наплавки инструмента для меха­нической обработки (резцы, фрезы, протяжки и др.) и горнобурового инструмента (долота, шарошки), изоляторов и выводов кон­денсаторов, всевозможных трубчатых соединений и других изде­лий, которые трудно изготовить в виде цельных конструкций;
  7. индукционного нагрева с целью сушки или оплавления лако­вых, полиэтиленовых и других антикоррозионных, термозащит­ных и электроизоляционных покрытий лент, труб и профи­лей;
  8. индукционного нагрева труднообрабатываемых материалов перед механической обработкой резанием (слябы, слитки из тита­новых и других специальных сплавов);
  9. бестигельной зонной плавки и очистки полупроводниковых материалов-кремния, германия и др.;
  10. эпитаксиального наращивания пленок чистых металлов и полупроводников;
  11. плавки металлов во взвешенном состоянии;
  12. обогрева технологического оборудования (трубопроводы, химические реакторы, экструдеры, пресс-формы и т. д.);
  13. индукционного нагрева газов (воздух, кислород, аргон, ксенон и др.) для осуществления химических реакций и проведе­ния различных высокотемпературных технологических процессов.

Диэлектрический нагрев используется для разнообразных технологий, основными из которых являются:

  1. сушка древесины, пряжи, сыпучих материалов типа люми­нофоров и т. д.;
  2. склейка изделий из древесины (оконные переплеты, двери, щиты, мебель, музыкальные инструменты); полимерных и комби­нированных материалов;
  3. сварка изделий из полихлорвинила и других пластмасс, а также синтетических волокон и пленок;
  4. подогрев пресс-порошков перед штамповкой;
  5. подогрев с целью ускорения полимеризации при изготовле­нии изделий из стеклопластиков и реактопластов;
  6. формование изделий из пенополистирола при изготовлении тепловой изоляции холодильников, упаковочной тары, теплоизо­ляционных плит, моделей для точного литья и т. д.;
  7. сушка литейных стержней;
  8. дефростация и разогрев пищевых продуктов.

Общая и единичная мощность установок диэлектрического на­грева, используемых в промышленности, значительно меньше, чем индукционных, а их конструкция в сильной степени определяется особенностями технологического процесса. Проектирование таких установок сводится или к выбору существующих установок, вклю­чающих источник питания и технологическое устройство, или к индивидуальному проектированию специальной установки с одновременной разработкой технологического процесса.

Имеется много других весьма эффективных применений токов высокой частоты в промышленном производстве. Области и мас­штабы их использования непрерывно расширяются.

2. Поверхностный эффект, глубина проникновения тока

Индукционный нагрев осуществляется вихревыми токами, ин­дуктированными в нагреваемом предмете. Поэтому индукционным способом можно нагревать только электропроводящие материалы. Вихревые токи возникают в проводнике, если его поместить в пере­менное магнитное поле. Эти токи всегда замыкаются в нагревае­мом теле и протекают в плоскости, перпендикулярной напряжен­ности магнитного поля. Магнитное поле образуется индуктором, когда по нему пропускают переменный ток.

Применяется большое количество разнообразных конструкций и форм индукторов: Однако в большинстве случаев индукторы - это одновитковые или многовитковые катушки, изготовленные из медной трубки. Когда индуктор возбуждает магнитное поле, на­правленное по оси детали, говорят, что индукционный нагрев осуществляется в продольном магнитном поле. Если же направ­ление поля перпендикулярно оси нагреваемой детали, говорят, что индукционный нагрев осуществляется в поперечном магнит­ном поле. Плотность индуктированных в проводнике вихревых токов по сечению проводника неодинакова, она уменьшается от поверхности к центру. Это явление носит название поверхност­ного эффекта. Поверхностный эффект наблюдается при любой форме проводника.

Распределение тока в детале при поверхностном эффекте
Рис. 1. Проявление поверхностного эффекта в ци­линдре при разных частотах

На рис. 1 показано распределение тока и мощности по слоям одинаковой толщины в цилиндрическом проводнике из немагнит­ной стали диаметром 50 мм, помещенном в магнитное переменное поле частотой 500 и 10 ООО Гц. Ток в индукторе принят одинако­вым при той и другой частоте.

В соответствии с распределением тока в поверхностном слое выделится наибольшая мощность. Действительно, в нашем случае при частоте 10 000 Гц 75% всей мощности, переданной в провод­ник, выделилось в первом слое. Поверхностный эффект выражен при прочих равных условиях более резко там, где частота выше.

Амплитуда плотности тока в массивном однородном теле убы­вает непрерывно по экспоненте e -x/Δ. На расстоянии Δ от поверх­ности она уменьшается в е ≈ 2,718 раз (основание натурального логарифма).

Величина Δ, называемая глубиной проникновения тока в дан­ный материал, играет очень большую роль в теории индукцион­ного нагрева. Она служит своеобразной единицей измерения, опре­деляющей линейные размеры нагреваемых тел и индуктора, и ши­роко используется в электрических и тепловых расчетах. Если минимальный линейный размер поперечного сечения тела, в ко­тором протекают вихревые токи, много больше Δ (в восемь и более раз), то частота является высокой (или тело массивным), если же он меньше Δ, то частота низкая (или тело «прозрачное» для электромагнитного поля данной частоты).

В массивном теле в пределах слоя толщиной Δ выделяется почти вся энергия (86,5%), а мощность, передаваемая в тело, мо­жет быть точно найдена, если считать, что весь индуктированный ток равномерно распределен в слое Δ. Это позволяет находить сопротивления тел при ярком поверхностном эффекте по форму­лам для постоянного тока. В общем случае Δ теряет свою физи­ческую интерпретацию и является расчетной величиной, харак­теризующей длину электромагнитной волны в материале (λ = 2лΔ) и зависящей только от его свойств и частоты тока:

Глубина проникновения тока

где ρ - электрическое сопротивление материала проводника, Ом∙см; μ - относительная магнитная проницаемость; f - частота тока, Гц.

Для ферромагнитных материалов различают глубину проник­новения в холодный металл Δx (до температуры точки Кюри) и в горячий металл - Δг или Δ2. Значения глубины проникнове­ния Δ для разных материалов и частот приведены в табл. 1.

Таблица 1. Значения глубины проникновения тока (см)

Глубина проникновения тока при индукционном нагреве

3. Формы и размеры проводника

Из рис. 1 видно, что при частоте 500 Гц мощность, выделенная в цилиндре, меньше, чем при 10000 Гц. Это свидетельствует о низ­ком к. п. д. индуктора, а при 500 Гц, что всегда наблюдается при слабо выраженном поверхностном эффекте, к. п. д. будет выше, если диаметр цилиндра увеличить. Для сравнительной оценки результатов индукционного нагрева и удобства решения уравне­ний электромагнитного поля для каждой формы проводника введен безразмерный параметр т - показатель степени поверхностного эффекта. Из всего многообразия форм проводников выделяют обычно три наиболее распространенных:

сплошной цилиндр с радиусом R2

Расчет параметров индуктора 

пластина прямоугольной формы с толщиной h2

Расчет параметров индуктора

полый цилиндр с толщиной стенки τ2 (труба)

Расчет параметров индуктора 

Характеристики нагрева, например распределение плотности тока, у тел одинаковой формы (подобных тел) будут те же самые, если их показатели степени поверхностного эффекта равны. На­пример, частота 50 Гц при нагреве цилиндра радиусом 280 мм ана­логична частоте 2500 Гц при нагреве цилиндров радиусом 40 мм из того же материала, так как в обоих случаях показатель т один и тот же. Таким образом, показатель степени поверхност­ного эффекта определяет относительную частоту или относитель­ный размер тела.
4. Магнитная проницаемость

Относительная магнитная проницаемость большинства мате­риалов близка к единице, лишь немного превышая ее для пара­магнетиков или не достигая для диамагнетиков. Сюда относятся все газы, большинство непроводниковых материалов и метал­лов - медь, алюминий, титан, графит, аустенитные стали и др.

Вещества, у которых относительная магнитная проницаемость значительно превышает единицу, называются ферромагнетиками. К ним относятся железо, кобальт, никель и сплавы на их основе, в том числе большинство сталей и чугунов. Для ферромагнетиков характерна зависимость μ от напряженности магнитного поля, температуры и ряда других факторов, таких, как характер термо­обработки, предварительное намагничивание и т. д.

С повышением температуры μ может несколько снижаться (в сильных полях) или возрастать (в слабых полях), а затем при определенной температуре, называемой точкой Кюри, резко падает до единицы. Для сталей точка Кюри равна 740-780° С, для никеля - 360° С, кобальта- 1140° С.

Магнитные свойства стали
Рис. 2. Усредненные магнитные свойства стали:
1 - кривая намагничивания В = f (H); 2, 3, 4 - зависимость H2 от Н (значения Hz надо умножить 105 ;106; 107 соответст­венно для каждой из этих кривых)  

Зависимость μ от H слож­на и неоднозначна. Разли­чают несколько видов маг­нитной проницаемости (ус­редненная, динамическая и т. д.), однако при рас­четах индукторов обычно ис­пользуется μ, определяемая по основной кривой намагни­чивания для действующего значения напряженности ма­гнитного поля. С увеличе­нием H проницаемость быстро растет, достигает максимума при некоторой напряженно­сти H называемой критиче­ской, и затем падает, стремясь в пределе к единице. В слабых и средних полях μ различных ферромагнетиков существенно раз­личается (в десятки раз), однако в сильных полях (H >> Hкр), характерных для индукционного нагрева, кривые намагничива­ния отличаются мало. Усредненная кривая намагничивания для углеродистых сталей и зависимость H2 √μ приведены на рис. 2. Они позволят связать напряженность поля и μ с удельной мощ­ностью, поглощаемой ферромагнетиком в переменном магнитном поле. При этом напряженность поля от поверхности в глубь центра уменьшается и μ возрастает. Если поверхностный эффект выра­жен сильно, плотность тока в ферромагнетике меняется почти по прямой, а удельная мощность равна

Расчет параметров индуктора

где Нe - действующее значение напряженности магнитного поля на поверхности среды, А/см; μе - относительная магнитная проницаемость на поверхности, Расчет параметров индуктора; ρ - удельное сопро­тивление, Ом∙см; Δе - глубина проникновения тока при μ= μе(табл. 2).

Отсюда Расчет параметров индуктора, где ρ0 взято в кВт/см2. Зная ρ0 , находим Расчет параметров индуктора и затем по кривой рис. 2 - Не и μe. В лога­рифмическом масштабе зависимости μе = f (Не), μе == f (ρ0) и Δе  =  f ( f, ρ0) близки к прямым и более удобны для использования (рис. 3).Глубина проникновения тока  при различных частотах

Рис. 3. Зависимость магнитной прони­цаемости стали μ и глубины проникно­вения тока Δ от удельной мощности ρо при различных частотах тока f  (μ- сплошные линии слева вниз направо; Δ - сплошные ли­нии слева вверх на­право; Δ-штрихо­вые линии при мас­штабе справа; μ  = f (Н) - штрих-пунктирная линия)

Если поверхностный эффект в ферромагнетике выражен не­ярко, необходимо специальное рассмотрение зависимости μ от ρ0.

Следует отметить, что магнитная проницаемость сталей аустенитного класса, например стали XI8H10T, может отличаться от единицы (μ = 1,5÷2,0) из-за наличия остаточного феррита.

Таблица 2. Значения Δ, μе для углеродистой стали при ρ= 18-10-6 Ом∙См

Глубина проникновения тока для углеродистой стали
5. Электрическое сопротивление

Известно, что электрическое сопротивление металлов с ростом температуры возрастает (рис. 4).

Электрическое сопротивление металлов

Рис. 4. Зависимость удельного электросопротив­ления материалов от температуры

Для ферромагнетиков наибольшее изменение происходит при температуре точки Кюри. В дальнейшем рост его замедляется. При температурах выше 1000° С сопротив­ление сталей различных марок практически становится одина­ковым. В табл. 3 указаны сопротивления материалов, наиболее часто нагреваемых индукционным методом.

Таблица 3. Удельное сопротивление металлов

Удельное сопротивление металлов
6. Теплоемкость
Значения теплоемкости можно найти в табл. 3 и 4. С повыше­нием температуры теплоемкость возрастает. Теплоемкость боль­шинства чистых металлов лежит в пределах 5,8-6,2 ккал/г °С (г∙атом- вес вещества в граммах, равный атомному весу). Сред­няя теплоемкость в диапазоне температур 50-1300° С равна 0,16 кал/г∙°С практически для всех марок сталей.
Таблица 4. Значения средней теплоемкости с (кал/г-° С) в интервале от 50° С до Т для различных сталей
 
Значение теплоемкости для сталей
7. Теплопроводность

С ростом температуры теплопроводность чистых металлов обычно понижается. Исключение представляют алюминий и не­которые сплавы, например нержавеющая сталь Х18Н10Т, у которых теплопроводность растет при увеличении температуры. Теплопроводность всех марок сталей сближается при темпера­туре выше 800° С. Среднее значение ее для стали (900° С) равно 0,065 кал/см∙с∙°С. Значения коэффициента теплопроводности для некоторых металлов и сплавов приведены в табл. 3.

8. Температуропроводность

Температуропроводность является расчетной величиной, ха­рактеризующей скорость распространения температуры и завися­щей от теплоемкости, теплопроводности и удельного веса материала в соответствии с формулой Расчет параметров индуктора. Температуропроводность оказывает значительное влияние на результаты тепловых расчетов. Поэтому выбирать ее рекомендуется с учетом темпера­туры нагрева (табл. 5).  

Таблица 5. Значения коэффициента температуропроводности а (см2/с) для различных сталей

Температуропроводность сталей для расчета параметров индуктора


Источник: "Проектирование и эксплуатация высокочастотных установок" Шамов А. Н., Бодажков В. А.

Назад

Поиск

RSS ЭЛИСИТ 

Последние новости

23.05.2017
Индукционный нагреватель твч, установка твч индукционного нагрева,  закалка твч,  пайка, печь твч, термообработка ... Лучшая компания России
Компания "ТЕСЛАЙН ИНДАКТИВ" награждена почетной медалью «Национальный знак качества. Выбор России» в рейтинге "ЛУЧШАЯ КОМПАНИЯ РОССИИ — 2016" ...
Подробнее...

09.01.2017
Индукционный нагреватель твч, установка твч индукционного нагрева,  закалка твч,  пайка, печь твч, термообработка ... Модернизированная китайская установка
Инженерами ТЕСЛАЙН выполнен ремонт и модернизация установки индукционного нагрева мощностью 60кВт в двухблочном исполнении производства КНР (Китай)
Подробнее...

20.07.2016
Индукционный нагреватель твч, установка твч индукционного нагрева,  закалка твч,  пайка, печь твч, термообработка ... Услуга закалки ТВЧ
Услуги закалки ТВЧ деталей в новом цехе на производственной площадке ООО "ТЕСЛАЙН ИНДАКТИВ", г.Томск. Выполнение срочных заказов.
Подробнее...

Фотостена

Индукционный нагрев, установки ТВЧ индукционного нагрева, печи ТВЧ, индукционный нагреватель

Индукционная пайка ТВЧ установка

ТВЧ закалка трубы индуктор